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IRISA (CNRS & INRIA), METISS, Campus de Beaulieu
35042 Rennes Cedex, France

E-mail : {lbenaroy,bimbot,remi}@irisa.fr

Abstract— In this paper, we address the problem of audio
source separation with one single sensor, using a statistical model
of the sources. The approach is based on a learning step from
samples of each source separately, during which we train gaussian
scaled mixture models (GSMM). During the separation step, we
derive Maximum A Posteriori (MAP) and/or Posterior Mean
(PM) estimates of the sources, given the observed audio mixture
(Bayesian framework). From the experimental point of view, we
test and evaluate the method on real audio examples.
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I. INTRODUCTION

Source separation is an increasingly popular theme in the
field of signal processing, especially since new tools, such as
Independent Component Analysis (ICA) have been proposed,
developed and improved [2], [7], [13], [5].

Independent Component Analysis has many applications,
on biomedical, functional magnetic resonance imaging data
for instance, as well as applications in speech processing and
audio source separation.

The source separation problem can be formulated as an
equation :

xi =

m∑

j=1

aijsj (1)

where m sources sj with amplitude factors aij are assumed
to be summed to form a collection of n sensor signals xi.
This case is classically refered to as the linear instantaneous
mixture. Note that hypotheses such as independence or non-
gaussianity of the sources usually lead to a solution [11].

Two different cases may be distinguished :
1) The number of sensors n is greater or equal to the num-

ber of sources m. In this particular case, the estimation
of the mixing matrix A = (aij) happens to be very
useful, as the sources may be recovered via the pseudo-
inverse of this matrix.

2) The number of sensors n is less than the number of
sources m. In this case (known as the under-determined
case), the estimation of the matrix A is not sufficient to
recover the sources.

A. Presentation

The present article addresses an extreme situation of the
second case (under-determined) [13]. We study here the case
of a single sensor, with two sources, which is a very specific
case, as the mixing equation is reduced to x = s1 + s2

Here are the main features of this work :
• We use a source model. Building a good model of each

source is crucial and it must exploit some knowledge
on the sources. In this respect, the approach may not
be qualified as “blind” estimation, contrary to classical
(even under-determined) cases. In this paper, we address
the case of audio sources, of which we build (or assume)
statistical models.

• There is a natural formalism for the single sensor case :
the Bayesian formalism. This formalism is based on a
statistical framework, as the phenomena we observe are
variable. It makes it possible to take into account both
the additive setting, which yields a likelihood function,
and the source models, which provide a priori densities
and correspond to prior knowledge on the problem. In
practice, we consider a training step in which model
parameters of each sources are estimated separately. We
then make use of this prior information in the separation
step.

Even though we consider, in this study, the special case of
two sources with one single sensor, many results can be
generalized to more sources (at least theoretically).

B. Formalism

In a probabilistic formalism, the sources can be estimated
through a Maximum Likelihood (ML) estimate as the mixing
equation (1) leads to the definition of a likelihood function :

(ŝ1, ŝ2) = arg max
s1,s2

p(x|s1, s2) (2)

where x is the observed signal, whereas si, i = 1, 2 are the
sources which are to be estimated. The problem with the ML
approach is that there are multiple solutions, since the system
is underdetermined.

It is therefore natural to introduce the a posteriori proba-
bility distribution for the sources, in a Bayesian formalism :

p(s1, s2|x) ∝ p(x|s1, s2)p1(s1)p2(s2), (3)

where p(x|s1, s2) is the likelihood function and p1(s1), p2(s2)
correspond to the prior knowledge about the sources. Here
the sources are supposed to be independent, i.e. p(s1, s2) =
p1(s1) · p2(s2).

Then, the Maximum A Posteriori estimator may lead to a
solution for the source separation problem :

(ŝ1, ŝ2) = arg max
s1, s2

p(s1, s2|x)
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Relation (3) is the basis for the estimation of the sources, as
it permits to take into account both the additive setting through
the likelihood function, and the prior information about the
sources via the a priori densities. The parameters of these prior
densities (covariance matrices, for instance) are estimated in
a off-line, training step.

Some former attempts have been made to solve the source
separation problem with one single microphone [4]. In partic-
ular, the method proposed in [15] is close to our approach as it
uses Hidden Markov Models and filter theory. Our work pro-
vides mathematically grounded algorithms and generalizes the
approach to a wide range of statistical models and estimation
criteria.

C. Bayesian approach

Several methods in ICA or even in “noisy” Principal
Component Analysis (PCA) [16], [5], rely on the Bayesian
formalism. In the case of the instantaneous linear mixture of
m sources s into n sensors x, the basic equation (1) becomes :
x = As+b, where b is some white noise (gaussian distributed
for instance).

In this case, the noise distribution corresponds to the like-
lihood function, because we have : p(x|s,A) = p(x−As) =
p(b). In the particular case of Laplacian distributed sources (as
prior distributions), the mixing matrix A may be estimated via
the Maximum A Posteriori of the distribution of s conditionally
to x (MAP criterion) :

ŝ = arg max
s

p(s|x,A) = arg max
s

p(x|s,A) · p(s)

Generally speaking, when the prior laws are unknown, but
the independence of the sources is assumed, the sources may
be estimated through a semi-parametric approach [1].

In this study, the models behind the prior densities p1, p2 are
more specific, though the formalism (i.e. the Bayesian point of
view) is the same. In our approach, we use prior information
about characteristic Power Spectral Densities (PSD) of each
source in order to achieve the source separation. This infor-
mation may be obtained in a prior training step on separated
excerpts of the sources.

D. Organization of the paper

This article is organized as follows :
In section 2, we recall some basics of the Bayesian theory

and we describe the classical Wiener filtering approach for
stationary sources.

In section 3, we make use of the Bayesian formalism in
order to derive Wiener estimators in the case of non-Gaussian
priors.

In section 4, we present the resulting separation algorithm
in the Short Term Fourier Transform (STFT) domain.

In section 5, we describe evaluation criteria which we use
in the experiments.

Finally, in section 6, we test and evaluate the proposed
approach on a real audio excerpt of Jazz music.

II. WIENER FILTERING

A. The Bayesian formalism

1) Framework: As explained in the introduction, the
Bayesian formalism offers a natural framework in order to
incorporate prior knowledge in an estimation problem. In
this section, we recall how this framework can be used for
estimating a parameter θ, given observed data x.

First, we assume that we are given a parametric statistical
model, f(x|θ), where x represents the observed data. θ is the
only unknown parameter (or set of parameters) which belongs
to a finite dimensional vector space. The density f(x|θ), from
which the data x is drawn, is called the likelihood function as
a function of θ.

Then, we define the a priori distribution π(θ) of the
parameter θ, which represents the knowledge we have about
this parameter, before observing the data x. This leads to the
definition of the a posteriori density, according to Bayes law
:

p(θ|x) ∝ f(x|θ)π(θ)

From this distribution, the estimation of parameter θ is possible
and, in a sense, the notion of a posteriori law is a key notion
in the Bayesian theory.

2) Estimation and cost function: We study now the estima-
tion of the parameter θ, according to the observed data x. To
do this, we define a cost function C(α, θ).

This cost C(α, θ) represents the cost of replacing the true
value of the parameter θ with its estimate α.

The estimation of the parameter θ is done by minimizing
the mean cost over all possible values of θ, according to its
posterior density.

αopt = arg min
α

∫

θ

C(α, θ)f(x|θ)π(θ)dθ

In the case of a quadratic cost C(α, θ) = ‖α − θ‖22, the
Bayesian estimator is the conditional Posterior Mean (PM) :
E(θ|x). There exists another standard cost function C(α, θ) =
1 − δα−θ (δ is the Dirac distribution). In this case the
corresponding Bayesian optimal estimator is the Maximum A
Posteriori estimator (MAP) :

αopt = arg max
θ

f(x|θ)π(θ)

B. Bayesian formulation of the Wiener filter

Suppose s1 and s2 are two Gaussian processes, independent,
centered and with covariance matrices Σ1 and Σ2. We observe
a noisy realization of the sum of the two processes, x =
s1 +s2 + b, where b is some Gaussian white noise of variance
σ2.
As presented in the introduction, we have the following
likelihood function : p(x|s1, s2) = p(b) and prior density :
p(s1, s2) = p(s1) · p(s2). If we further suppose that the noise
component is Gaussian distributed, the likelihood function
p(x|s1, s2) becomes :

p(x|s1, s2) = p(b) = g(x− s1 − s2, σ
2I),
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where g(y,Σ) is the gaussian centered distribution :

g(y,Σ) =
1

(2π)N/2

1√
|det Σ|

exp

[
−1

2
yT Σ−1y

]

N being the dimension of the observation y.
Concerning the prior densities, we may assume that p(s1) =

g(s1,Σ1), p(s2) = g(s2,Σ2). In this setting, the likelihood
p(x|s1, s2) is the parametric law of the observation x, whereas
s1 and s2 are the parameters to be estimated. p(s1) and p(s2)
are the a priori laws over the parameters, which represents
knowledge about these parameters before observing x. In this
section, we assume a Gaussian a priori law.

Relying on Bayes law, the following expression for the a
posteriori law can be derived :

− log p(s1, s2|x) = 1
2σ2 ‖x− s1 − s2‖22

+ 1
2sT

1 Σ−1
1 s1 + 1

2sT
2 Σ−1

2 s2 + cte
(4)

We deduce the MAP estimator for s1 and s2 from this
formula :

ŝ1 = Σ1[Σ1 + Σ2 + σ2I]−1x

ŝ2 = Σ2[Σ1 + Σ2 + σ2I]−1x

In the case of a “vanishing” noise, i.e. σ → 0, the estimator
converges towards the Wiener estimator.

From expression (4), we see that the posterior distribution
p(s1, s2|x) is a gaussian distribution, as the expression inside
the brackets is a quadratic form in s1 and s2. We conclude
that the MAP and PM estimators are, in that case, identical.

C. Stationary Processes

In the specific case when s1 and s2 are stationary and (ap-
proximately) circular processes (i.e. with a Toeplitz covariance
matrix) s1 and s2, the basis B which makes both covariance
matrices diagonal is the discrete Fourier basis, which vectors
are

{
Ff [n] = 1√

N
exp

(
2πifn

N

)}
0≤f<N

, where F denotes

the Discrete Fourier Transform operator and f denotes the
frequency index.

In this case, the Wiener filtering can be interpreted as the
following operation in the frequency domain :

F̂s1[f ] =
σ2

1 [f ]

σ2
1 [f ] + σ2

2 [f ]
· Fx[f ]

F̂s2[f ] =
σ2

2 [f ]

σ2
1 [f ] + σ2

2 [f ]
· Fx[f ]

D. Limits and extensions

Let us recall the set of hypotheses made so far :
• The a priori knowledge concerning the sources is reduced

to the knowledge of the covariance matrices, which
corresponds to Power Spectral Densities (PSD), in the
stationary case.

• The stochastic processes s1 and s2 are assumed to be
Gaussian; equivalently we restrict the problem to linear
estimators.

• Both processes s1 and s2 are stationary and circular.

As audio signals are generally non-Gaussian and non-
stationary, the previous method may not be applied directly.
The approach must be generalized to other prior densities,
through the Bayesian framework.

This suggests to extend classical Wiener filtering to different
kind of prior densities, in particular to non-Gaussian unimodal
densities, to Gaussian mixture models and even to more
complex models.

III. EXTENSIONS OF WIENER FILTERS TO NON-GAUSSIAN
PRIORS

A. Non-Gaussian unimodal densities

The Wiener filter approach can be extended to other fam-
ilies of unimodal densities, for instance generalized gaussian
densities :

G(y, α,Σ) ∝ exp
[
−β(α)

∥∥∥Σ−1/2y
∥∥∥

α

α

]

where ‖y‖αα =
∑

k |y[k]|α. We recall that β(α) =
[

Γ(3/α)
Γ(1/α)

]α/2

The Bayesian model now takes the following form :

p(x|s1, s2) = g(x− s1 − s2, σ
2I) likelihood function

p(s1) = G(s1, α1,Σ1)
p(s2) = G(s2, α2,Σ2)

}
prior densities

The a priori law of the sources s1 and s2 are thus generalized
gaussian densities.

Using Bayes law, the a posteriori law becomes :

− log p(s1, s2|x) =
1

2σ2
‖x− s1 − s2‖22

+β(α1)
∥∥∥Σ−1/2

1 s1

∥∥∥
α1

α1

+ β(α2)
∥∥∥Σ−1/2

2 s2

∥∥∥
α2

α2

+ cte

It is sometimes possible to find an expression (in some cases,
an analytic one) for the MAP and PM estimators of s1 and s2.
Let us have a look at the MAP estimator in some particular
cases.

1) Particular cases:
a) Both sources have laplacian prior densities: In the

case α1 = α2 = 1, i.e. both prior densities are laplacian
laws and the covariance matrices are diagonal, we obtain the
following MAP estimators, in the noiseless case :

ŝ1[k] =

{
x[k] if σ1[k] > σ2[k]

0 otherwise

ŝ2[k] =

{
x[k] if σ2[k] > σ1[k]

0 otherwise

b) One laplace source and one gaussian source: As-
suming now that source s1 has a laplacian prior density, i.e.
α1 = 1, with diagonal covariance matrix, whereas s2 is a
gaussian white noise of variance σ2

2 , that is α2 = 2.
Then the MAP estimator for s1 is the coefficients shrinkage

proposed by D. Donoho in [8] :

ŝ1[k] = sign(x[k]) ·max[|x[k]| − λ[k], 0], (5)

where λ[k] =
√

2σ2
2

σ1[k] .
In this case, the second source may be considered as a noise

and the expression (5) may be interpreted as a reduction of
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the corrupted observed signal x from a quantity proportional
to the noise variance. If the sources are expressed in a wavelet
basis, this is often refered to as wavelet-shrinkage and this is
a powerful tool for denoising purposes.

c) A more general case : α1 = α2 = α: In this case
(same generalized gaussian density for each source), it is
possible to define a function h(r;α) if both covariance matrix
are diagonal. h(r;α) is the function :

h(r;α) =
r(

α
α−1 )

1 + r(
α

α−1 )
,

in the case α > 1. We obtain (noiseless case) :

ŝ1[k] = h

(
σ1[k]

σ2[k]
;α

)
x[k]

ŝ2[k] =

[
1− h

(
σ1[k]

σ2[k]
;α

)]
x[k]

This is just a generalization of the Wiener filter formula with
a different shape for the weighting function h.

B. The case of Gaussian Mixture Models

The above developments can be viewed as examples of what
can be done using the Bayesian framework, in the case of
unimodal densities.

For dealing with non-stationary signals, it is necessary to
consider other families of models for the sources. In this
section, we study the case of Gaussian Mixture prior densities
(GMM priors) [6], in line with former work in the field of
speech processing, where parent approaches have been used
to enhance the robustness of speech recognition in noisy
environments (see for instance : [17], [18], [19]).

G(y, {$(i)}, {Σ(i)}) =
K∑

i=1

$(i)g(y,Σ(i)) (6)

where g is the gaussian function and
∑K

i=1 $(i) = 1.
As a generative model, the Gaussian Mixture model as-

sumes that an observation is obtained by first selecting one
active component within the K gaussians in the mixture (fol-
lowing the probability distribution {$(i)}) and then generating
a gaussian observation following g(y,Σ(i)) for the active
component.

For source separation, the Gaussian Mixture model permits
to deal with multiple covariance matrices, that is multiple PSD
(Power Spectral Densities) shapes, in the case of frequency
domain filtering.

In the Bayesian formalism, we obtain the following prior
densities :

p(s1) =

K1∑

i=1

$
(i)
1

exp
[
− 1

2sT
1 Σ

(i)
1

−1
s1

]

(2π)N/2|det(Σ
(i)
1 )|1/2

p(s2) =

K2∑

j=1

$
(j)
2

exp
[
− 1

2sT
2 Σ

(j)
2

−1
s2

]

(2π)N/2|det(Σ
(j)
2 )|1/2

with
∑K1

i=1 $
(i)
1 =

∑K2

j=1 $
(j)
2 = 1.

Here, the MAP estimation is not tractable directly. In order
to get back to the gaussian case (which is solved with Wiener
filters), we introduce hidden variables q1 and q2 which are
associated with the active components in both GMM models,
i.e. the gaussian densities from which the sources data were
most likely generated. This is a typical incomplete data setting.

In other words, the following likelihood and prior densities
for the hidden qi process (i = 1, 2) are considered :

p(si|qi = k) =
exp

[
− 1

2sT
i Σ

(k)
i

−1
si

]

(2π)N/2|det(Σ
(k)
i )|1/2

p(qi = k) = $
(k)
i

The estimators are thus calculated conditionally to the hidden
state couple (q1, q2).

1) First step : state estimation: As the couple of states
(q1, q2) is generally unknown, we have to estimate this couple.

If the states are q1 = i and q2 = j (that is to say, if we know
the active components in both mixture models), then s1 has a
gaussian distribution conditionally to q1, of covariance matrix
Σ

(i)
1 and s2 has also a gaussian distribution conditionally to

q2 with covariance matrix Σ
(j)
2 . We deduce that the sum x =

s1 + s2 + b has gaussian distribution conditionally to (q1, q2)

with covariance matrix Σ
(i)
1 + Σ

(j)
2 + σ2I .

We deduce then the following posterior formula :

p(i, j|x) ∝ p(x|i, j) · p(i) · p(j)

∝ $
(i)
1 $

(j)
2 gauss(x,Σ

(i)
1 + Σ

(j)
2 + σ2I)

This is the a posteriori law for the couple of components
(i, j) for both mixture models, conditionally to the observed
process x. We will note in the following γi,j(x) = p(i, j|x),
which is the a posteriori probability that the components (i, j)
are active in each respective GMM, when observing x.

2) Second step : construction of the filters: If the active
states q1 and q2 are known, then the problem can be solved by
the Wiener filter approach, conditionally to the couple (q1, q2),
as both priors are conditionally gaussian.

We have :

−2 log p(s1, s2|x, i, j) =
1

σ2
‖x− s1 − s2‖22

+sT
1 [Σ

(i)
1 ]−1s1 + sT

2 [Σ
(j)
2 ]−1s2 + cte

If q1 = i and q2 = j are known, we have the conditional
Bayesian (Wiener) estimator (as we have seen previously, the
conditional MAP and PM estimators coincide) :

E(s1|i, j) = Σ
(i)
1 [Σ

(i)
1 + Σ

(j)
2 + σ2I]−1x

E(s2|i, j) = Σ
(j)
2 [Σ

(i)
1 + Σ

(j)
2 + σ2I]−1x

a) Maximum A Posteriori estimation: When the active
components q1 = i, q2 = j are not known, they can be
estimated as the MAP estimation of γi,j(x) yielding one active
component per GMM source model. In that case, we fall back
on the Wiener filter setting, using the estimated couple of
states. The approach can be understood as an adaptive Wiener
filtering process.
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b) Posterior Mean estimator: We may also estimate the
sources s1 and s2 through the PM estimator [9].

As we have from Bayes law :

p(s1|x) ∝
∑

i,j

p(s1|x, i, j)p(q1 = i, q2 = j|x)

∝
∑

i,j

p(s1|x, i, j)γi,j(x)

We deduce the following PM estimator :

E(s1|x) =

∫

s1

s1p(s1|x)ds1

=
∑

i,j

γi,j(x)

[∫

s1

s1p(s1|x, i, j)ds1

]

=
∑

i,j

γi,j(x) E(s1|x, i, j)

Finally :

E(s1|x) =

K1∑

i=1

K2∑

j=1

γi,j(x) · Σ(i)
1 [Σ

(i)
1 + Σ

(j)
2 + σ2I]−1 · x

and similarily for s2.
Moreover, relying on the above developments :

γi,j(x) ∝ $
(i)
1 $

(j)
2 g(x,Σ

(i)
1 + Σ

(j)
2 + σ2I),

with
∑

i,j γi,j(x) = 1.
Thus, the first step consists in computing the posterior

probabilities γi,j(x), followed by the computation of weighted
Wiener filters. The second step consists in filtering the sources
with this adapted filter, with weight coefficients γi,j(x) which
thus depend on the observed process x.

3) HMM models: It must be noted that the generalized
Wiener filter with GMM models can be extended to HMM
models (Hidden Markov Models). Indeed, the only differ-
ence is that the weighting probabilities γi,j(x) must then be
computed through a forward-backward algorithm, which may
result in a greater algorithmic cost1.

4) Limitations of the GMM model: In the context of audio
processing, we may observe the same sound corresponding to
a similar PSD shape, repeated at different amplitudes and time
indexes. If the GMM models are used as described above,
there has to be as many gaussian components as there are
different possible amplitudes, although they correspond to the
same sound. This is quite restrictive.

This is why we have considered a more elaborate model :
the Gaussian Scaled Mixture Model (GSMM), in order to sep-
arate the variance shape (PSD), and the amplitude information
(gain factor).

1The algorithmic complexity of the algorithm with GMM models (which
can be viewed as HMM models of order 0) is of order O(Q1 ·Q2), where Q1

and Q2 are the number of gaussian components in each source model. With
fully-connected HMM models of order p, the complexity becomes O(Qp+1

1 ·

Q
p+1
2 ). As a result, the algorithmic complexity with HMM models may be

very high and even untractable in the case of HMM models of order greater
than one, unless they are only sparsely connected.

C. Gaussian scaled mixture models

The Gaussian Scaled mixture model is a mixture of gaussian
scaled densities [14].

A gaussian scaled density corresponds to a random variable
of the form ga =

√
a · g, where g is a gaussian distributed

vector variable with variance σ2 and a is a non-negative scalar
random variable, which may be drawn according to a prior
density p0(a).

Thus the density of the gaussian scaled variable y is :

ga(y|a) =
1√

2πaσ
exp

[
−1/2

‖y‖22
aσ2

]
.

The marginal law is :

ga(y) ∝
∫

a

1√
2πaσ

exp

[
−1/2

‖y‖22
aσ2

]
p0(a)da.

A gaussian scaled mixture model takes therefore the fol-
lowing form :

p(s1|a1
1, . . . , a

1
K1

) =

K1∑

i=1

$
(i)
1

exp
[
− 1

2sT
1 (a1

i Σ
(i)
1 )

−1
s1

]

(2πa1
i )

N/2|det(Σ
(i)
1 )|1/2

p(s2|a2
1, . . . , a

2
K2

) =

K2∑

j=1

$
(j)
2

exp
[
− 1

2sT
2 (a2

jΣ
(j)
2 )

−1
s2

]

(2πa2
j )

N/2|det(Σ
(j)
2 )|1/2

Conditionally to q1 = i, q2 = j, a1
i and a2

j , the Bayesian
estimator (MAP or PM) is (cf. Wiener filter) :

E(s1|x, i, j, a1
i , a

2
j ) = a1

i Σ
(i)
1 [a1

i Σ
(i)
1 + a2

jΣ
(j)
2 + σ2I]−1x

E(s2|x, i, j, a1
i , a

2
j ) = a2

jΣ
(j)
2 [a1

i Σ
(i)
1 + a2

jΣ
(j)
2 + σ2I]−1x

Conditionally to a1
1, . . . , a

1
K1

and a2
1, . . . , a

2
K2

, the weighting
probabilities are :

γi,j,a1
i
,a2

j
(x) ∝ $

(i)
1 $

(j)
2 gauss(x, a1

i Σ
(i)
1 + a2

jΣ
(j)
2 + σ2I)

as a1
i Σ

(i)
1 + a2

jΣ
(j)
2 + σ2I is the covariance matrix of the

observed process, conditionally to the couple of states and
the amplitudes.

For the posterior mean Bayesian estimator, we should inte-
grate these estimates over all possible values of the amplitude
parameters, that is :

E(s1|x) =

K1∑

i=1

K2∑

j=1

∫

a1
i

∫

a2
j

γi,j,a1
i
,a2

j
(x)×

E(s1|x, i, j, a1
i , a

2
j )p0(a

1
i )p0(a

2
j )da1

i da2
j

As the integrals may be untractable, we use a maximum
likelihood estimation to determine the coefficients a1

i and
a2

j , under a positivity constraint and we set the amplitude
coefficients to this value instead of integrating out.

We use the following estimation formula :

(â1
i , â2

j ) = arg max
a1≥0, a2≥0

γi,j,a1
i
,a2

j
(x) (7)

which can be seen as a reweighted positive least square
estimate.
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IV. SEPARATION ALGORITHM

As we aim to separate audio sources, which are locally
stationary in general, it is natural to work with the Short-Term
Fourier Transform (STFT) denoted by S. As this transform is
linear, the additive setting remains : Sx(t, f) = Ss1(t, f) +

Ss2(t, f) + Sb(t, f). The covariance matrices Σ
(i)
1 and Σ

(j)
2

are assumed to be diagonal, with running element σ
(i)
1 (f)2

and σ
(j)
2 (f)2 respectively.

A. GMM models
We note γi,j(x) = γi,j(t), the weighting probabilities

corresponding to the observed frame Sx(t, f) at time index
t. The separation algorithm with the GMM models is given in
the Algorithm 1.

Algorithm 1
Each source s1 and s2 is characterised by a Gaussian Mixture Model
{$

(i)
1 , σ

(i)
1 (f)}1≤i≤K1 and {$

(j)
2 , σ

(j)
2 (f)}1≤j≤K2 . The noise level

σ is set to an arbitrarily small value.

1) For each frame index t, compute the weighting proba-
bilities :

γi,j(t) ∝ $
(i)
1 $

(j)
2 ×∏

f gauss(|Sx(t, f)|, σ(i)
1 (f)2 + σ

(j)
2 (f)2 + σ2),

with
∑

i,j γi,j(t) = 1.
2) Then compute the posterior mean estimator :

Ŝs1(t, f) =

K1∑

i=1

K2∑

j=1

γi,j(t)
σ

(i)
1 (f)2

σ
(i)
1 (f)2 + σ

(j)
2 (f)2 + σ2

Sx(t, f),

Ŝs2(t, f) =

K1∑

i=1

K2∑

j=1

γi,j(t)
σ

(j)
2 (f)2

σ
(i)
1 (f)2 + σ

(j)
2 (f)2 + σ2

Sx(t, f).

B. GSMM models
In the STFT setting, conditionally to the pair of states

(i, j) and to the amplitude parameters a1
i , a

2
j , the sources are

Gaussian centered processes. Therefore, the observed mixture
is also a Gaussian centered process, of diagonal covariance
a1

i σ
(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2. Then, we have the following

likelihood function :

p(x|i, j, a1
i , a

2
j ) ≈ (8)

exp

[
−∑f

|Sx(t,f)|2

2(a1
i
σ

(i)
1 (f)2+a2

j
σ

(j)
2 (f)2+σ2)

]

∏
f

√
2π(a1

i σ
(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2)

. (9)

The amplitude coefficients can be computed in a Maximum
Likelihood scheme, under positivity constraints. It can be
shown [3] that equation (7) can be solved by finding (a1

i , a
2
j )

so as to solve the following system :
∑

f

a
1
i σ

(i)
1 (f)2

|Sx(t, f)|2 − (a1
i σ

(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2)

(a1
i σ

(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2)2

= 0

∑

f

a
2
jσ

(j)
2 (f)2

|Sx(t, f)|2 − (a1
i σ

(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2)

(a1
i σ

(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2)2

= 0

These equations are obtained by differentiating the logarithm
of equation (8) with respect to the amplitude parameters,
and introducing Lagrange multipliers in order to incorporate
the positivity constraints. They can be solved through an
iterative procedure, where the denominator is kept constant
[12], leading to the first step as described in Algorithm 2.

The estimation of the amplitude parameters a1 and a2 can
be interpreted as a match of the squared spectral module
of the STFT process Sx(t, f) with the estimated variances
a1

i σ
(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2, under positivity constrains.

The separation algorithm with the GSMM models is sum-
marized in the Algorithm 2.

Algorithm 2
Each source s1 and s2 is characterised by a Gaussian Mixture Model
{$

(i)
1 , σ

(i)
1 (f)}1≤i≤K1 and {$

(j)
2 , σ

(j)
2 (f)}1≤j≤K2 . The noise level

σ is set to an arbitrarily small value.

1) For each frame index t, compute the amplitude coeffi-
cients, by the following iterative procedure :

a) Initialize [a1
i (t)]0 and [a2

j (t)]0
b) At each iteration `

• evaluate [r(t, f)]2` =

[a1
i (t)]`−1 σ

(i)
1 (f)

2
+ [a2

j (t)]`−1 σ
(j)
2 (f)

2
+ σ2

• update [a1
i (t)]` = [a1

i (t)]`−1 ×
∑

f
σ

(i)
1 (f)2

[r(t,f)]2
`

|Sx(t,f)|2

[r(t,f)]2
`

/
∑

f
σ

(i)
1 (f)2

[r(t,f)]2
`

• update [a2
j(t)]` = [a2

j(t)]`−1 ×
∑

f
σ

(j)
2 (f)2

[r(t,f)]2
`

|Sx(t,f)|2

[r(t,f)]2
`

/
∑

f
σ

(j)
2 (f)2

[r(t,f)]2
`

• if convergence then a1
i (t) = [a1

i (t)]` and
a2

j (t) = [a2
j (t)]` else iterate (`← ` + 1)

2) Compute the weighting probabilities γi,j(t) :

γi,j(t) ∝ $
(i)
1 $

(j)
2 ×∏

f gauss(|Sx(t, f)|, a1
i σ

(i)
1 (f)2 + a2

jσ
(j)
2 (f)2 + σ2),

with
∑

i,j γi,j(t) = 1.
3) Finally, filter the observed frame :

Ŝs1(t, f) =
∑

i,j γi,j(t)
a1

i σ
(i)
1 (f)2

a1
i
σ

(i)
1 (f)2+a2

j
σ

(j)
2 (f)2+σ2

Sx(t, f),

Ŝs2(t, f) =
∑

i,j γi,j(t)
a2

jσ
(j)
2 (f)2

a1
i
σ

(i)
1 (f)2+a2

j
σ

(j)
2 (f)2+σ2

Sx(t, f).

V. EVALUATION CRITERIA

For the evaluation of the separation experiments, we need
to define some criteria, in order to compare the performance
of GMM models in various settings (different numbers of
components for the model of each source). We suppose that
the two original sources s1 and s2 are uncorrelated and we
denote their estimates ŝ1 and ŝ2.

Let us consider the orthogonal projection of the estimated
sources over the vector space spanned by the real sources. We
may write ŝ1 = α1s1 +α2s2 +n1 and ŝ2 = β1s1 +β2s2 +n2.
We define a Source to Interference Ratio (SIR) as the ratio in
dB between the source component α1s1 (in the case of the
first source ŝ1) and the interference component α2s2.
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We also define a Source to Artefact Ratio (SAR) as the
ratio between the actual mixture α1s1 + α2s2 and the noise
component n1. Note that these two components are supposed
to be orthogonal.

SIR1 = 20 log10

∣∣∣∣
α1

α2

∣∣∣∣
‖s1‖
‖s2‖

SAR1 = 20 log10
‖ŝ1−n1‖
‖n1‖

SIR2 = 20 log10

∣∣∣∣
β2

β1

∣∣∣∣
‖s2‖
‖s1‖

SAR2 = 20 log10
‖ŝ2−n2‖
‖n2‖

The SIR is a way to measure the residual of the other
source in the estimation of each source, whereas the SAR is an
estimate of the amount of distortion in each estimated signal.
One may find more details about these measures in [10].

VI. EXPERIMENTAL STUDY

In the experimental setting, we work on two tracks of a
jazz piece, provided separately on a CD designed to learn
how to play jazz. A first track contains the piano and bass
part, whereas the second track consists of the drum part. Both
tracks are consistent with each other, i.e. when they are mixed,
they form a coherent piece of music.

We use 45 seconds of each excerpt separately as training
data, for estimating both source model parameters (PSD vec-
tors and prior weights in the GMM model) : one model for
the piano+bass track and another model for the drums. This
is done using a conventional Expectation-Maximisation pro-
cedure for optimising the training data likelihood (Maximum
Likelihood criterion).

The next 15 seconds of music are mixed by adding both
tracks. This excerpt is different from the training excerpts.
We estimate the sources in the separation step from the audio
mixture, using as prior knowledge the source models estimated
in the training phase.

The excerpts are sampled at a sampling rate of 11kHz. As
an input to the STFT, we use a windowed signal frame of
length 47 ms.

Note that the sources are approximately decorrelated, as
10 log10

|〈s1,s2〉|
‖s1‖‖s2‖ = −16 dB. Indeed, although belonging to

the same piece, the sources do not show any short-term corre-
lation, though they obviously are not completely independent.

A. Evaluation

We evaluate the Source to Interference Ratio (SIR) and
the Source to Artefact Ratio (SAR) with various numbers of
components Q1, Q2 in the mixture models. We evaluate the
GMM models and Gaussian Scaled Mixture Models (GSMM).

The performances are reported in table I for the SIR and
table II for the SAR. Note that we have also given the SIR
and SAR for the standard Wiener filtering, in these tables, as
this technique can be seen as a particular case of the proposed
method with a single mixture component per model.

B. Discussion

As the number of gaussian components in each source
model goes from 1 (Wiener standard setting) to 4 components
and then 8 components, the SIR and SAR seem to improve.

criterion → PM MAP
state source GMM GSMM GMM GSMM

Wiener piano 8.7 4.7 15.5 4.4
Wiener drums 6.7 19.6 0.7 13.8

4 piano 10.5 11.0 20.0 10.5
4 drums 9.7 18.5 2.8 18.2
8 piano 11.0 11.1 20.0 10.7
8 drums 11.3 18.2 4.0 18.1
16 piano 11.8 12.9 16.9 12.6
16 drums 11.9 16.9 4.2 16.3

TABLE I
SIR FOR EACH OF THE SOURCES AS A FUNCTION OF THE NUMBER OF

COMPONENTS IN EACH SOURCE MODEL.

criterion → PM MAP
state source GMM GSMM GMM GSMM

Wiener piano 7.8 12.3 1.8 12.4
Wiener drums 5.8 0.0 14.7 -0.5

4 piano 8.4 8.7 2.0 8.6
4 drums 5.9 4.0 9.6 3.7
8 piano 8.9 8.5 3.4 8.7
8 drums 5.9 4.0 8.9 4.0
16 piano 8.1 8.6 3.5 8.4
16 drums 5.4 5.3 8.3 5.0

TABLE II
SAR FOR EACH OF THE SOURCES AS A FUNCTION OF THE NUMBER OF

COMPONENTS IN EACH SOURCE MODEL.

Then with 16 components, the SIR and SAR decrease in some
cases (and for some particular estimators) or increase in other
cases. This may be interpreted as a consequence of model
overfitting, although it might come also from initialization
problems in the training step (EM algorithm).

For the GSMM approach with 16 components for each
source model, the SIR reaches approximately 12 dB for the
piano+bass source and 16 dB for the drum source, with an
SAR in the range of 9 and 5 dB respectively. These figures
globally represent an improvement compared to the standard
Wiener filtering technique, which shows an advantage in using
source models that are able to track their statistical behaviours.

We may remark that in the GSMM case, the MAP criterion
gives slighlty poorer results compared to the PM criterion,
although it is computationally less expensive. In the GMM
case, the MAP criterion gives poor results.

The GSMM model seems to improve the SIR results com-
pared to the GMM model, in particular for the drum source,
at the cost of a slight SAR decrease.

It must be underlined that the trends observed in our exper-
iments are undoubtedly dependent on the statistical properties
of the two sources used in this study. A more comprehensive
experimental investigation, using various sources and different
families of models will be necessary before drawing conclu-
sions with a more general significance.

VII. CONCLUSION

We have presented an approach to single sensor source
separation based on an extension of Wiener filtering to non-
stationary processes, through the use of Gaussian Mixture
Models instead of plain Gaussian densities in the standard
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(a)

(b)

(c)

(d)

(e)

Fig. 1. from top to bottom : (a) piano+bass source, (b) drum source, (c)
mixture of both sources, (d) estimated piano+bass source, (e) estimated drum
source

Wiener approach. We have extended the approach to the
case of gaussian scaled mixture models, which permits to
advantageously separate the PSD shape from the amplitude
information.

The presented approach makes use of a preliminary step,
in which PSD vectors are estimated on some excerpts of the
sources, corresponding to the various GSMM model states.
This prior information is needed in order to perform the source
separation. Our preliminary experiments show some benefit on
the approach as compared to Wiener filtering, on our example.

Many tracks deserve to be further investigated to improve
and robustify the proposed approach. For instance, the prior
densities that we have used in the Bayesian framework are
all phase invariant. Thus we may not recover through these
models the true phase of the sources. Phase modelling in the
STFT domain should be studied, in order to improve further
the approach.

An other step could consist in introducing a psycho-acoustic
model (both in the separation step and in the evaluation
criteria) in order to optimize the separation in the most
perceptible frequency bands for a given source, rather than
using a uniform criterion, as is the case in the current approach.
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